AD=A116 276 CALIFORNIA UNIV BERKELEY OPERATIONS RESEARCH CENTER F/6
POLYGON=TO=-CHAIN REDUCTIONS AND NETWORK RELIABILITY, (U}
MAR 82 A SATYANARAYANA: R K WOOD DAAGZ‘)-BI-%-O!.GO
UNCLASSIFIED ORC=RR-82-4 ARO~18195,2-MA




"WQ&%@
= i [I32
=

==
15
o

>
[ L
-
hs [
—
A ————
m————
et —s—
e ———

e
22 it e

MICROCOPY RESOLUTlON‘ TEST CHART




ORC 82-4
MARCH 1982

72

POLYGON-TO-CHAIN REDUCTIONS AND NETWORK RELIABILITY -

:3., SATYANARAYANA H«O- ] 8 [ ?5’- A-M

and
R. KEVIN WOOD

AD A116276

OPERATIONS
2RESEARCH .
8 CENTER e \

Diatribution Unlimited

N e R A AT - £ 11 RN T T

FILE

' IVERSITY OF CALIFORNIA - BERKELEY
82 06 29 018

i



e

S

L

A i SRS NS R i
SR e el KL L S TR Mo BT LY s e it o

o

e

IR SR <

POLYGON~TO-CHAIN REDUCTIONS AND NETWORK RELIABILITY+

Operations Research Center Research Report No. 82~4

A. Satyanarayana and R. Kevin Wood

March 1982

U. S. Army Research Office - Research Triangle Park

DAAG29-81~K-0160

Operations Research Center
University of California, Berkeley

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

1'l’art::l.ally supported by the Air Force Office of Scientific Research
(AFSC), USAF, under Grant AFOSR-81-0122 with the University of

California. Reproduction in whole or in part is permitted for any
purpose of the United States Government. i




B0 i AN

a——— 3+

Ch e e e e

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS
REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSI-
TION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY
OTHER DOCUMENTATION.

NTIS Ghril
DTIC T43
Unanacur ~ed
Justif®iceticn, _

) 5 S
Diatrilutinns
Avallaniliny
Aave Ly s

Tist ! o

[ 4]

Accessicr For




T — S——
16. OISTRIBUTION STATEMENT (of thie Report)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T REPORT NUMPER 2. GOVT ACCESSION NO.
ORC 82-4

3. RECIR{ENT'S CATALOG NUMBER

4. TITLE (end Subtitte)

POLYGON-TO~CHAIN REDUCTIONS AND NETWORK
RELIABILITY

5. TYPE OF REPORT & PERIOD COVERED
Research Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

A. Satyanarayana and R. Kevin Wood

8. CONTRACT OR GRANT NUMBER(s)

AFOSR~-81-~0122

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Operations Research Center
University of California
Berkeley, California 94720

0. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

2304/A5

1. CONTROLLING OFFICE NAME AND ADORESS
United States Air Force

12. REPORT DATE :

March 1982

Air Force Office of Scientific Research
Bolling Air Force Base, D.C. 20332

13. NUMBER OF PAGES,

33

4. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Office)

15. SECURITY CLASS. (of thia report)
Unclassified

1Sa. ODECL ASSIFICATION/ DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

Also supported by the U. S. Army Research Office
under Contract DAAG29-81-K-0160.

- Research Triangle Park

19. KEY WORDS (Continue on reverse eide {f necessary and (dentily by block number)
Network Reliability

Series-Parallel Graphs

Efficient Algorithm

Graph Reductions

20. ASSTRACT (Continue on reverse side if neceseary and identity by block number)

(SEE ABSTRACT)

DO , 385 1473

EOITION OF | NOV 88 1S OBSOLETE
S/N 0102- LF- 014- 6601

Unclassified

R v v
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




N e e e o

g

i

ABSTRACT

let G = (V,E) be a graph whose edges may fail with known probabilities
and let K CV be specified. The K-terminal reliability of G , denoted
R(GK) , 1s the probability that all vertices in K are connected. Com-
puting R(GK) is, in general, NP-hard. Two classes of series-parallel
graphs, which arise from the configuration of the vertices in K , are
defined with respect to reliability computation, namely 8 -p reducible
and g -p complex. R(GK) can be computed in polynomial time for s -p
reducible graphs using well-known, reliability-preserving graph reduc-
tions. However, it cannot be computed in this way for the whole class

of &8 -p complex graphs. Only exponential-time algorithms as used on
general graphs were previously known for computing R(GK) in the &-p
complex case, but we prove that R(GK) is computable in polynomial time
in this case, too. A new set of reliability-preserving "polygon-to-chain"
reductions of general applicability is introduced which decreases the size
of a graph. Conditions are given for graphs which admit such reductions.
Combining all types of reductions, an O(IEI) algorithm is presented for
computing the reliability of any series~parallel graph irrespective of

the vertices in K .
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Polygon-to-Chain Reductions and Network Reliability

A. Satyanarayana and R. Kevin Wood

1. Introduction

Analysis of network reliability is of major importance in computer, communication and
power networks. Even the simplest models lead to computational problems which are NP-hard
for general networks [5], although polynomial-time algorithms do exist for certain network
configurations such as "ladders” and "wheels" and for some series-parallel structures such as the
well-known "two-terminal” series-parallel networks. In this paper, we show that a class of
series-parallel networks, for which only exponentially complex algorithms were previously
known [7,8], can be analyzed in polynomial time. In doing this, we introduce a new reliability-
preserving graph reduction of general applicability and produce a linear-time algorithm for com-

puting the reliability of any graph with an underlying series-parallet structure.

The network model used in this paper is an undirected graph G=(V,E) whose edges may
fail independently of each other, with known probabilities. The reliability analysis problem is to
determine the probability that a specified set of vertices KCV remains connected, i.e., the K-
terminal reliability of G. Two special cases of this reliability problem are the most frequently
encountered, the terminal-pair problem where |K|=2, and the all-terminal problem where
K=V,

In network reliability analysis, three reliability-preserving graph reductions are well-
known: the series reduction, the degree-2 reduction (an extension of the series reduction for

problems with [K|/>2) and the parallel reduction. From the reliability viewpoint, we classify

series-parallel graphs into two broad types, those which are reducible to a single edge using
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series, parallel and degree-2 reductions, and those which are not. The former type is referred to
as s-p reducible and the latter, s-p complex. For example, the series-parallel graph of Figure
la is s-p reducible if K={v;, v}, but is s-p complex for K={v, vg. Thus, the reducibility of
a series-parallel graph, for the purpose of reliability evaluation, depends on the nature of the

vertices included in K. A more detailed exposition of this concept appears in section 2.

The K-terminal reliability of an s-p reducible graph can be computed in polynomiai time.
Several methods exist for the solution of the terminal-pair problem for such a graph, i.e., for a
two-terminal series-parallel network [9,12], and for |K|>2, direct extensions of the methods
can be used. However, it has been believed that computing the reliability of s-p complex
graphs is as hard as the general problem. The purpose of this paper is to present an efficient,
linear-time algorithm for this problem by introducing a new set of reliability-preserving graph

reductions called polygon-to-chain reductions.

In a graph, a chain is an alternating sequence of vertices and edges, starting and ending
with vertices such that all internal vertices have degree 2. Two chains with the same end ver-
tices constitute a polygon. In section 3, we show that a polygon can be replaced by a chain and
that this transformation will yield a reliability-preserving reduction. We discuss the relationship
between s-p complex graphs and polygons in section 4. Using the polygon-to-chain reductions
in conjunction with the three simple reductions mentioned earlier, a polynomial-time procedure
is then outlined which will compute the reliability of an s-p complex graph. This procedure is
very simple but not necessarily linear, so in section S we develop, in detail, an efficient algo-
rithm which is shown to operate in O(|E|) time. This algorithm will compute the K-terminal
reliability of any graph having an underlying series-parallel structure. Finally, in section 6, we
discuss how the algorithm can be extended to reduce a nonseries-parallel graph as far as possi-
ble so that it could be used as a subroutine in a reliability analysis algorithm for general net-

works.

A Tt e 5 e, 7 ALY g
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2. Preliminaries

Consider a graph G=(V,E) in which all vertices are perfectly reliable but any edge e, may
fail with probability g; or work with probability p=1—g;. All edge failures are assumed to occur
independently of each other. Let K be a specified subset of V with |K|>2. When certain ver-
tices of G are specified to be in K, we denote the graph G together with the set K by Gx. We
will refer to the vertices of G belonging to K as the K- vertices of Gx. The K- terminal reliability
of G, denoted by R(Gy), is the probability that the K-vertices in Gk are connected. K-
terminal reliability is a generalization of the common reliability measures, all-terminal reliability

and terminal-pair reliability where K=V and |K|=2, respectively.
Reliability of a separable graph:

A curvertex of a graph is a vertex whose removal disconnects the graph. A nonseparable
graph is a connected graph with no cutvertices. A block of a graph is a maximal nonseparable
subgraph.

Let G=(V,E) be a separable graph and veV be any cutvertex in G. G can be partitioned
into two connected subgraphs GV=(V,E)) and G@=(V,E, such that V,|JVm=V,
Vi Vz=v, E{|JEyE and E| (" E~@. Also, E\=@ and E;#@. Denoting K;=K MV, and
Kz=K V3, it is well known that R(G=R(G"y \; JR(G?P (). Thus the reliability of
a separable graph can be computed by evaluating the reliabilities of its blocks separately. For

this reason, we henceforth consider only nonseparable graphs.
Simple reductions:

In order to reduce the size of graph Gy and therefore reduce the complexity of computing

R(Gy), the following well-known simple reductions are often applied:
Parallel reduction

A parallel reduction replaces a pair of edges e,=(u,v) and e,=(u,v) with a single edge

e,~(u,v) such that p.=1-g,q,.
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Series reduction

Suppose e,=(u,v) and e,=(v,w) such that u=w, deg(v)=2 and v{ K. A

series reduction replaces e, and e, with a single edge e,=(u,w) such that p.=p,p,.

If G'x is the graph obtained from Gk after a series or parallel reduction, then
R(GY)=R(G'y). In other words, the K-terminal reliability of Gy remains invariant under

series or parallel reductions.
Degree-2 reduction

Suppose e,=(u,v) and e,=(v,w), such that u=w, deg(v)=2, and {u,v,w)CK. A
degree-2 reduction replaces e, and e, with a single edge e.=(u,w) such that p.=p,p,/(1—~q,qs)
and R(Gx)=(1-q,q,) R(G'k-,), where G’ is the graph obtained from G by replacing e, and
&, with e..
Series-parallel graphs:

The following definition should not be confused with the definition of a “two-terminal®
series parallel network in which two vertices must remain fixed. No special vertices are dis-
tinguished here. In a graph, edges with the same end vertices are parallel edges. Two nonparal-
lel edges are adjacent if they are incident on a common vertex. Two adjacent edges are
series edges if their common vertex is of degree 2. Replacing a pair of series (parallel) edges by
a single edge is called a series (parallel) replacement. A series- parallel graph is a graph that can
be reduced to a tree by successive series and parallel replacements. Clearly, if a series-parallel
graph is nonseparable, then the resulting tree, after making all series and parallel replacements,

contains exactly one edge.

We wish to clarify the subtle difference between the term "replacement” used here and the
term “reduction” used with respect to simple reductions. By reduction, we mean a reliability-
preserving reduction; hence, the term is applicable only to Gx. On the other hand, a replace-
ment is defined on G, irrespective of K. For example, in graph G as shown in Figure la,

series replacements exist while no reductions are possible in the corresponding Gy for
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Note: Darkened vertices represent
K-vertices

8 -p Reducible and s -p Complex Graphs

FIGURE 1




K={v,, vs (Figure 1b). Motivated by this, we define an s-p reducible graph and an s-p com-

4 plex graph next.
s-p reducible graphs and s-p complex graphs:

Clearly, if G has no series or parallel edges, then for any K, Gk admits no simple reduc-

tions. If G is a series-parallel graph, then a simple reduction might or might not exist in Gk

£ depending upon the vertices of G that are chosen to be in K. For example, consider the
series-parallel graph G of Figure la. The graph G, for K={v, v3, v as in Figure lc, can be
reduced to a single edge by successive, simple reductions. On the other hand, for K={v,, v,
Gk has no reductions (Figure 1b). A graph G is termed s-p reducible if it can be reduced to a

single edge by successive, simple reductions.

It is possible for a (nonseparable) series-parailel graph to admit one or more simple reduc-
tions for a specified K and still not be completely reducible to a single edge. As an illustration,
consider Gk of Figure 1d. Two series reductions may be applied to this graph to obtain the

graph of Figure le, but no further simple reductions are possible. A graph Gy is s-p complex if

G is a series-parallel graph, but Gk cannot be completely reduced to a single edge using simple

reductions. An s-p complex graph may or may not admit some simple reductions.
Chains and polygons:

In a graph, a chain x is an alternating sequence of distinct vertices and edges,

! vi, (vi,v2), vy, (v, w3), w3, <o, vemp, (giu¥i)y ¥vio  such  that the internal vertices,
i V3 V3, . . ., Vx|, are all of degree 2 and the end vertices v, and v, are of degree greater than 2.
A chain need not contain any internal vertices, but it must contain at least one edge and the

two end vertices. The length of a chain is simply the number of edges it contains. A subchain

is a connected subset of a chain beginning and ending with a vertex and containing at least one

edge. Both the end vertices on a subchain may be of degree 2. The notation x will also be used

for a subchain with the usage differentiated by context.

Suppose x) and x; are two chains of lengths /; and /,, respectively. If the two chains have

common end vertices « and v, then x| x2 is a polygon of length /;+/;. In other words, a

— _ ——————————d
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polygon is a cycle with the property that exactly two vertices of the cycle are of degree greater
than 2. While this definition allows two parallel edges to constitute a polygon, we will initially

require a polygon to be of length at least 3.

3. Polygon-to-chain reductions

In this section a new set of reliability-preserving reductions will be introduced which
replace a polygon with a chain. Consider a graph Gk which does not admit any simple reduc-
tions but does contain some polygon A. In general, no such A need exist, but, if it does exist,

then the number of possible configurations is limited.

Property 1: Let Gk be a graph which admits no simple reductions. If G contains a polygon,
then it is one of the seven types given in the first column of Table 1.

Proof: This follows from the facts that (i) every degree-2 vertex of G is a K-vertex, (ii) there
can be no more than two K-vertices in a chain, and (iii) the length of any chain in G is at

most 3.
Polygon-to-chain transformations:

Let A be a type j polygon in G, a graph which admits no simple reductions. Let u and
v be the vertices in A, such that deg(u)>2 and deg(v)>2, then A ,=x',| ) x";, where x'; and
x"; are chains in Gg with common end vertices u and v. Replacing the pair x'; and x", of
polygon A by the corresponding chain y ;, as in Table 1, is called a polygon-ro-chain transforma-

tion.

In Theorem 1 we will prove that a polygon-to-chain transformation can be used to pro-
duce a reliability-preserving, polygon-to-chain reduction. It is useful here, however, 10 make
the distinction between a polygon-to-chain reduction and a polygon-to-chain transformation, in
the same manner that simple reductions and replacements are differentiated. A transformation
is only a topological mapping of a graph G to a graph G’ and ignores all considerations of relia-
bility including K-vertices. A reduction includes the topological transformation as well as all

reliability calculations and changes in K-vertices.




TABLE 1

Polygon-to-Chain Reductions

New Edge Reliabilities

Note: Darkened vertices represent K~vertices
Polygon Type Chain Type Reduction Formulas
&= 9,Pp9c
6= paqch q q q
§ = P PP (1 +-2 +-—b +—C)
Py Py P.
o= qapch
° Palple 9. 9 q
§ = P PP, (1 +-2 -0»—ll +—c—)
Pa Py Pc

(3)

& =P,%,9.Pq + 9aPLP 9y +qapchpd
B =Pa9pPcdy

9% 4. 9

b,’c_ 7d
5=p P.P.P (1 +_.a_+_+__~+._.)
a*brchd P, Py P, Py

o

"
[}

+
-3

O

Ps = B+4

Q=(u+62(8+62

e= qapchpd

8= Pa9p9cPy + 9aPpPc9q

6 =paqbpch q q q
a b c d
= =2 —
Y papbpcpd(l +pa + )

(4) Pb Pc Pd
ey @ =9,PyPc Y
€, e. “er % %t 8 = Pa%Pc %
- Tl e- PaPpc99
- €4 ) 9 9% 9% Y4
Y =P PpPcPy l4—+—+—+—
) a'b'c P, P, P. Py

(6)

a= qapbpchpe
8 =p, a7 (Pya, +a4P.)
+ pb(qapcpdqe +pachdpe)
s = PaPL9:P3%
q, 9 9
a b+

C
Y'PPPPP(1+_‘+“’ —
a'bcidte pa pb PC

9, 9
49, e
Pg Pe

)

a= qapbpchpepf

+ PP a.Pp(Pya, +q4p.)
+ 9P P.Py(a.Pe*pag)

8 =P PyacPyPelg w q
a b c
Y =P PLP.PPPe (L + pa+pb+pc
qd 9 9
+ —+—+—
. Py Pa Pg)

B= Pa9pPe (qdpepf + PP + pdpeqf)

s B +Yy

pg_J_
t §+y

0= Y (B+1) (5 +Y)
* 2
Y




The proof technique of Theorem 1 requires that we first discuss the use of conditional
probabilities for computing the reliability of a graph in a general context. Let e=(u,v) be
some edge of Gy and let F, denote the event that e, is working and F; denote the complemen-
tary event that ¢; has failed. Using the conditional probability rules, the reliability of G can be

written as

R(Gy) = p,R(Gk|F) + q,R(G|F) (1)

G| F; actually defines a new graph (say G’x?) in which vertices v and v are known to be
connected. Thus, in G'k, edge e; may be deleted and « and v merged into a single superver-
tex w=y | J v. If either ueK or veK then weK’ and thus G’k is defined by

G = (V—y—v+wE—¢)

K if u,v¢K

K'= |K—u=v+wif ueK or veK
Similarly Gg|F, defines a new graph G"x- where G"=(V E-¢;) and K"=K. Figure 2 illustrates

how these two graphs are induced.

Equation 1 can be applied recursively on the induced graphs and simple reductions made
where applicable within the recursion. Eventually the induced graphs are either reduced to sin-
gle edges for which the reliability is simply the probability that the edge works, ot some K-
vertices become disconnected, in which case the reliability of the induced graph is zero. In this
way, the reliability of any general graph may be computed. This method of computing the reli-
ability of a graph is known as "factoring” [10,11] and is a special case of pivotal decomposition

of a general binary coherent system [1].

For our purposes, factoring will only be applied to the edges of a single polygon or a
chain. To illustrate, consider the graph Gy of Figure 3a which contains a type 1 polygon with 3
edges, e,, €, and e. Let F denote a compound event or "state” such as F,F,F. and let F be
the set containing all 2* possible states. Also, let z=1 if the event F, occurs in F and let z=0
if F, occurs. In other words, 2, is an indicator variable which is 1 if e, works and is O if e; has

failed. Equation | can be extended now to
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(a) Graph GK with a Type 1 Polygon
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(b) Graphs Induced by Factoring on the Edges of the Polygon

FIGURE 3
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R(Gp - ;'p."%'"‘m"w"”pc"qc""R(lef)
Fe
Figure 3b shows the eight graphs induced by the terms of the above equation. Note that four
of the induced graphs are identical and that two others have zero reliability since wekK is
disconnected in these graphs. With the above introduction, we are now ready to show that a

reliability-preserving reduction exists for each of the polygon-to-chain transformations given in

Table 1.
Polygon-to-chain reductions:

Theorem 1: Suppose Gy contains a type j polygon. Let G’k denote the graph obtained from
Gk by replacing the polygon A; with the chain x; having appropriately defined edge probabili-
ties, and let (2; be the corresponding multiplication factor, all as in Table 1. Then,
R(Gx) = @ ; R(G'k).

We prove the exactness of reduction 7 only, since reductions 1-6 may be shown in a simi-
lar fashion. Figure 4 illustrates the use of the theorem on a general graph containing a type 7
polygon and Figures 5 and 6 are used to illustrate the proof of the theorem. To improve reada-
bility in the proof, we have dropped the subscript *7" on «, 8, 8, y, and 2 even though,

strictly speaking, these are all functions of the type of reduction.

Proof of Theorem 1: Let F, be the event that edge ¢; in the polygon is working and let F, be
the event that edge e; has failed. F denotes a compound event or state such as F.Fbl.’cl-‘,,F',F r
and F denotes the set of all 2° such states. Also, z=1 if F; occurs and z=0 if F, occurs. By

conditional probability,

RGO =T 2., " - p7q, " TR(GxI F) o))
EeF

Only sixteen of the possible sixty-four states are non-failed states where R(Gy|F)=0.
Each non-failed state will induce a new graph with a corresponding set of K-vertices of which

there are only four different possibilities. Figure S5 gives these four graphs Gk, i=1,23.4,

plus the summed state probabilities in each case, a, 8, 8, and y. Thus, by grouping and elim-

inating terms, Equation 2 is reduced to
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Type 7 Polygon-to-Chain Reduction
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(a) Schematic of a Graph with a Type 7 Polygon
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(b) Non-failed Induced Graphs
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(a) Graph of Fig. 5 with Polygon Replaced by Chain
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R(Gy) = aR(GI.Kl) + ﬁR(Gz'Kz) + GR(GLK’) + 'yR(G“() 3

Now G’k is obtained from Gyx by replacing the polygon with a chain u,e,, v, €, v e, W
and redefining K as shown in Figure 6. Using conditional probabilities again,
R(G'K') - ﬂrqu(R(G'K'NF'F;F:)) + q,P,P,R(G'K'l(F,F,F,))

+ P'P,q,R(G'x'I(F,F,F,)) + PrPsQJR(G'K'“FrFsF:))
where only the non-failed states have been written.

@)

The four non-failed states of G'x induce the same four graphs which the non-failed states
of Gx induce. Multiplying Equation 4 by a factor {2, we thus have
2 R(G'x) = 0pq:pR(G1k) + 24,22 R(G2x)

+ 02,0,4.R(G3x) + Qp,pp,R(Gyx)

Equating, term by term, the coefficients in Equations <3} zad (5) gives

)

a=() QPP = Q (l-pr)pspl
B=90p4q.p = 2p,(1-p)p,
8= Qpp.q =~ 2pp,(1-p)
y = Qpp:p,

These four equations in the four unknowns Q, p., p,, and p, may be easily soived to obtain

p=TX— p=2

aty B+y
o= X Q- (a+y) (B8+y) (5+y)
8+‘y 72

which are the values given in Table 1 for a type 7 polygon. The reader may verify that when

these values are substituted into Equation 4, we obtain

N R(G)= "R(GI.Kl) +ﬂR(Gz‘K’) + 5R(GJ.K’) + ')IR(G‘_K‘)
= R(Gy D

Theorem | can be extended to give a result which can be useful for computing the relia-
bility of a general graph. In a nonseparable graph, a separating pair is a pair of vertices whose
deletion disconnects the graph. For example, vertices u and v in Figure S are a separating pair.
Using the same conditioning arguments as in the proof of Theorem 1, it can be shown that any

subgraph between a separating pair can be replaced by a chain of 1,2, or 3 edges to vield a

reliability-preserving reduction. For two special cases, it has been shown that a subgraph
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between a separating pair can be replaced by a single edge [6]. The first case occurs when the
subgraph including the separating pair has no K-vertices, and the second case occurs when the
separating pair belongs to K. The fact that a chain can always be used to replace any subgraph,

irrespective of the K-vertices, greatly increases the generality of any aigorithm which uses this

reduction.

4. Properties of s-p complex graphs

In this section we set down some properties of series-parallel and, in particular, s-p com-
plex graphs. We prove that.s-p complex graphs must admit a polygon-to-chain reduction if all
simple reductions have first been performed. Using this fact, we then outline a simple
polynomial-time procedure for computing the reliability of such graphs.

The following property is a simple extension of the definition of a series-parailel graph.
Property 2: Let G’ be the graph obtained from G by applying one or more of the following
operations:

A series replacement;

A parallel replacement;

An inverse series replacement (replace an edge by two edges in series);

An inverse parallel replacement (replace an edge by two edges in parallel).

Then, G’ is a series-parallel graph if and only if G is series-parallel.

Proof of Property 2 may be found in [3]. The next two properties show that the series-
parallel structure of a graph is not altered by simple or polygon-to-chain reductions.

Property 3: Let G’ be the graph obtained by a polygon-to-chain transformation on G. Then G’
is a series-parallel graph if and only if G is series-parallel.
Proof: G' may be obtained from G by one or more series replacements, a parallel replacement,

and one or more inverse series replacements, in that order. Thus, this property follows directly

from Property 2.0
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Property 4: Let G’y be the graph obtained from Gk by applying a simple reduction or a
polygon-to-chain reduction on Gg. Then, G’ is a series-paraile! graph if and only if G is series-
parallel.

Proof: A series or degree-2 reduction implements a series r;placemem, a parallet reduction
implements a parallel replacement, and a polygon-to-chain reduction implements a polygon-to-
chain transformation on G. Hence, by Properties 2 and 3, G' is a series-parallel graph if and

only if G is series-parallel. O

An important implication of Property 4 is that, if Gk is s-p complex, then application of a
simple reduction to G results in a graph which again is s-p complex. On the other hand, a
polygon-to-chain reduction on Gk results in a graph which is either s-p compliex or s-p reduci-
ble. By next proving that every s-p complex graph Gx admits a simple reduction or a
polygon-to-chain reduction, it will be possible to show that R(Gg) can be computed in polyno-

mial time for such graphs.

Property 5: Let Gk be an s-p complex graph. Then, Gx must admit either a simple reduction
or one of the seven types of polygon-to-chain reductions given in Tabie 1.

Proof: If Gy admits a simple reduction, then we are done. If G has no simple reductions, then
by Property 1, any polygon of Gk must be one of the seven types given in Table 1. Hence, we
need only show that G contains a polygon. Let G’ be the graph obtained by replacing all chains
in G with single edges. If G' contains a pair of paralle! edges, then the two chains in G
corresponding to this pair of edges constitute a polygon. We argue that G' must contain a pair
of parallel edges. If G’ has no parallel edges, no simple reductions are possible in G’ since all
vertices in G’ have degree greater than 2. Thus, G’ and hence G are not series-parallel graphs,

which is a contradiction. O
One simple procedure for computing R(Gg) can now be outlined as follows: (1) Make all
simple reductions; (2) find a polygon and make the corresponding reduction; and (3) repeat

steps 1 and 2 until G is reduced to a single edge. If Gy is originally s-p complex, then Proper-

ties 4 and 5 guarantee that the above procedure eventually reduces G to a single edge. The
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reliability is calculated by initializing M—1, letting M—MQ ; whenever a polygon-to-chain
reduction of type j is done, and letting M—M(1—-q,q,) whenever a degree-2 reduction is done
on some edges ¢, and e,. At the end of the algorithm with a single remaining edge e,, the reli-

ability of the original graph is given by R(Gg)=Mp,.

The total number of parallel and polygon-to-chain reductions executed by this procedure,
before the graph is reduced to a single edge, is exactly |[E|—|V|+1. This is because the number
of fundamental cycles in a connected graph is |[E|=|V|+1, and a parallel or polygon-to-chain
reduction deletes exactly one such cycle [2]. The complexity of steps (1) and (2) above can be
linear in the size of G, and thus, the running time of the whole procedure is at best quadratic
in the size of G. In order to develop a linear-time algorithm, we have found it necessary to
move the parallel reduction from the domain of simpie reductions to the domain of polygon-
to-chain reductions. Indeed, a paralle] reduction is a trivial case of a polygon-to-chain reduction
with a multiplier =1. We will henceforth consider two parallel edges to be the type 8 polygon

and the parallel reduction to be the type 8 polygon-to-chain reduction.

5. An O(|E]) algorithm for computing the reliability of an s-p complex graph

The objective here is to develop an efficient, linear-time algorithm for computing the reli-
ability of an s-p complex graph. This algorithm should also compute the reliability of an s-p
reducible graph as a special case and tell us if the graph is not series-parallel. All results needed
to present this algorithm have been established; however, some additional notation and

definitions must be given.

If u and v are the end vertices of a chain yx, then « and v are said to be chain-adjacent.
When it is necessary to distinguish these vertices, we will use the notation x(u,v). A subchain
with end vertices u and v will also be denoted x(u,v) but in this case u and v cannot be said
to be chain-adjacent. If A is a polygon formed by two chains xy(u, v) and x;(u, v}, then we use

the notation A(u,v)=x(u,v) |J x2(u,v). The algorithm is presented next, followed by a short

discussion and then a proof of its validity and linear complexity.




Algorithm
MAIN

Inpur: A nonseparable graph G with vertex set V, [V|>2, edge set E, |[E|>2, and set KEV,
[K|>2. Edge probabilities p; for each edge e;€E. i

Lo e et g Zian s

Ouwput: R(Gy) if G is series-parallel or a message that G is not series-parallel.

Variables: Gy and all vertex "marks" are represented by global data structures and variables.
All other variables are local.

(1) (Initialize) M~—1.

(2) (Initialize stack) Construct stack, T—{vlveV and deg(v)>2] marking all such v
"onstack".

(3) (Perform all series and degree-2 reductions)
(a) For each vertex veV such that deg(v) =2 and v¢K, SERIESREDUCE(v).

(b) For each vertex veV such that deg(v)=2 and veK, and while [E[>2,
DEGREE2REDUCE( v, M).

(4) If Tis empty then
(@) (G may be reduced to two parallel edges) If {Ei=2 then Print("R(Gg)="
M(1~g,4q,) ) and STOP.
(b) (Otherwise G has not been completely reduced) Print("G is not series-
parallel”) and STOP.
(5) (T is not empty) Remove v from T and mark v "offstack”. s
(6) (v may have been involved in a reduction since it was put on the stack) If
deg(v)=2 or v is marked "deleted" then go to (4).
(7) (Begin search or continue search for a polygen with one endpoint at v) Search
chains emanating from v until one of two cases occurs:

a) (v is found to be chain-adjacent to 3 distinct vertices) 3 chains
x(v,up), x{v,uy, x{v,uy) are found such that u= us7 u3# u,. In this case go
10 (4).

or
(b) A polygon A(v,w) is found.

(8) (A polygon has been found, make the polygon-to-chain reduction)
POLYREDUCE(A(v, w),x (v, w), M).

(9) If |IE|=]V] then (G has been reduced to a single cycle)
(a) T—o2. ;
(b) Goto (3). ’

(10) (G has not been reduced to a single cycie. Four cases can arise depending on the
new degrees of v and w.)

(@) If deg(v)>2 and deg(w)>2 then go to (7).
(b} If deg(v)>2 and deg(w)=2 then ]
(i) CHAINREDUCE((x(v,w),x(v,y),M).
(ii) 1If y is "offstack” then mark y "onstack™ and put y on T.

(it} Go to (7).
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(c) If deg(v)=2 and deg(w)>2 then
(i) CHAINREDUCE(x(v,w),x(x,w), M).
(i) 1If x is "offstack” then mark x "onstack"” and put x on T.
(iii} If wis "offstack” then mark w "onstack" and put won T.
(iv) (Since T cannot be empty) Go to (5).

(d) (Otherwise deg(v) =2 and deg(w)=2)
(i) CHAINREDUCE(x (v, w),x{x,y),M)}.
(i) If x is "offstack” then mark x "onstack” and put x on T.
(iii) If y is "offstack” then mark y "onstack” and put y on T.
(iv) (Since T cannot be empty) Go to (5).

End of MAIN.

SERIESREDUCE(v)
Inpur: A vertex v such that v¢K and deg(v) =2.

(This routine reduces Gg by making a series reduction on the two edges incident on v.

(1) Let x and y be the vertices adjacent to v and let e,=(v,x) and e,=(v,y).
(2) (Carry out the reduction)

(a) Delete edges e, and e, from Gk.

(b) Mark v "deleted".

(c) Add new edge e.={x,y) to Gk.

(d)  pe—paps
(3) Return.

End of SERIESREDUCE

DEGREE2REDUCE (v, M)
Input: A vertex v such that veK and deg(v) =2. Multiplier M.
‘ Output: Revised value of multiplier M.

, (This routine reduces Gk by performing a degree-2 reduction at v if v is adjacent to two K-
| vertices.)

(1) Let x and y be the vertices adjacent to v and let e,=(v,x) and ey=(v,y).
(2) If x,yeK then

(a) Delete edges e, and ¢, from Gi.

(b) Mark v "deleted".

(c) Add new edge e.=(x,y) to Gk.

) pe—(papp)/ (1-q4qs)

(&) M—M(1-gq,q,)
(3) Return.

End of DEGREE2REDUCE
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CHAINREDUCE( x(v,w),x(s.,0),M )

Input: A subchain x(v,w) obtained in a polygon-to-chain reduction of a polygon A(v,w). A
multiplier M.

Output: A completely reduced chain x(s,r) obtained from the chain containing the subchain
x(v,w). New multiplier M.

(This routine finds the chain containing the subchain x (v, w) and makes any series and degree-
2 reductions to this chain in Gg.)

(1) If deg(v)>2 and deg(w)=2 then
(@) s—v
(b) Search from w away from v to find the first vertex 7 such that deg(s)>2.
(2) If deg(v)=2 and deg(w)>2 then
(@ t—w
(b) Search from v away from w to find vertex s such that deg(s)>2.
(3) If deg(v)=2 and deg(w)=2 then
(a) Search from w away from v to find the first vertex ¢ such that deg(r)>2.
(b) Search from v away from w to find the first vertex s such that deg(s)>2.
(4) Define the new chain x(s,t) which is a superset of the subchain x (v, w).
(5) (Make any possible series and degree-2 reductions on x(s,?) in Gg)
(a) For each vertex wex(s,t) such that deg(u)=2 and wiK,

SERIESREDUCE(v).
(b) For each vertex wex(s,t) such that deg(u)=2 and wueK,
DEGREE2REDUCE (u, M).
(6) Return.
End of CHAINREDUCE

POLYREDUCE(A (v, w),x(v,w), M)
Inpur: Polygon A(v,w) and multiplier M.

Outpur: Chain or subchain x(v,w) resulting from polygon-to-chain reduction of A(v,w) and
new multiplier M.

(This routine reduces Gg by making the polygon-to-chain reduction on A(v,w) in Gx. It
returns the new multiplier M and the chain or subchain x(v, w) resulting from the reduction.)

(1) Determine which of the 8 types of polygons A(v,w) is, say type j.
(2) If j=8 then (A(v, w) is two edges in parallel)

(a) Let e, and e, be the two edges forming A(v, w).

®)  pe—1-q.9

(c) Delete ¢, from Gx.

(d) Let x(v,w) be e,.
(2) If /<7 then (Apply Theorem 1)

L
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(a) Update Gy by replacing A{v,w) with appropriate chain x(v,w) as given in
Table 1.

(b) Compute edge probabilities for edges in x (v, w) using the appropriate formulas
in Table 1.

(c) Compute 2 ; from Table 1.
@ M—MQ,
(4) Return.

End of POLYREDUCE

Simplicity and clarity dictate that the algorithm be presented in a form which is not com-
pletely structured. The primary departure from a structured program occurs at Step (7) of
MAIN where chains emanating ffom a vertex v are searched. Here the algorithm searches
until it finds that v is chain-adjacent to three distinct vertices or until it finds a polygon. If
three chain-adjacent vertices are found, the next vertex from the stack T is checked as long as
T is not empty. If a polygon is found, then it is reduced by a call to POLYREDUCE. If
deg(v) remains greater than 2 after the reduction, the algorithm returns to Step (7) and contin-

ues the search; no chains searched previously from v need be searched again.

Another expediency has been the reduction of G to two edges in parallel instead of to a
single edge. This device simplifies the program and allows - to avoid performing a polygon-
to-chain reduction on something which is not strictly a polygon by our definition, because both
end vertices are of degree 2. One final comment is that the stack 7 could be any sort of simple
linked list, since the order in which the vertices are inserted and removed is unimportant. A

stack is just a convenient implementation of a linked list.

The correctness of the algorithm is not hard to show. Arguments similar to those
presented here may be found in [13] where the problem is the recognition of two-terminal
series-parallel directed graphs. Suppose firstly that G consists of a single cycle. The series and
degree-2 reductions at Step (3) (ail steps are in MAIN) will reduce G to two edges in parailel

and T will be empty. The algorithm therefore gives R(Gy) at Siep (4.a).

Next, suppose that G does not consist of a single cycle, in which case T will not be empty

and an initial search for a polygon will begin at Step (7). Since all initial series and degree-2
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reductions were performed at Step (3), by Property S, any polygon found must be one of the
eight specified types. If a polygon is found and then reduced at Step (8), the resulting chain
may in fact be a subchain. If this happens, some new series and degree-2 reductions may be
admitted on the chain containing the subchain. These reductions are made at Step (10.b),
(10.¢), or (10.d). Thus, every time Step (7) is entered, the graph admits no series or degree-2

reductions, and any polygon found will be one of the eight given types.

Vertices are continually removed from the stack 7T and replaced, at most two at a time,
only when reductions are made. Since only a finite number of reductions can be made, T must
eventually become empty. If |El=2 at that point, then R{Gy) is correctly given at Step (4.a)
since only reliability-preserving series, degree-2, and polygon-to-chain reductions are ever per-
formed. Property 4 proves that the original graph must have been series-parallel. Suppose
instead that [E|>2 when T becomes empty. In this case, every vertex v with deg(v)>2 is
chain-adjacent to at least three distinct vertices. This is true since (i) every vertex v with
deg(v)>2 is initially put on the stack and its chain-adjacent vertices checked at Step (7), and
(ii) whenever the chain-adjacency of a vertex or vertices is altered (this can occur to at most
two vertices at a time) at Step (8), then this vertex or vertices are returned to the stack if not
already there. The following property proves that a graph with the given chain-adjacency struc-

ture is not series-parallel.

Property 6: Let G be a nonseparable graph such that all vertices v with deg(v)>2 are chain-

adjacent to at least three distinct vertices. Then, G is not a series-parallel graph.

Proof: Let G’ be the graph obtained from G by first replacing all chains with single edges in a
sequence of series replacements and then removing any parallel edges in a sequence of parallel
replacements. By Property 2, G is series-parallel if and only if G’ is series-parallel. Now, every
vertex veV’ has deg(v)>2 and there are no paralle! edges in E'. Thus, G’ admits no series or

parallel replacements and cannot be series-parallel. Therefore G cannot be series-parallel.0

This proves that if the algorithm terminates with |E|>2, the reduced graph is not series-

parallel, and Property 4 proves that the original graph could not have been series-parallel either.
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This establishes the validity of the algorithm. We now turn our attention to its computational

complexity.

In order to show that the algorithm is linear in the size of G, we must provide more
details of its implementation. We use a multi-linked adjacency list form to represent the given
graph G. In this representation, for each vertex a doubly-linked list of adjacent vertices
corresponding to incident edges is kept together with the associated edge probabilities. Every
edge is represented twice since we are dealing with an undirected graph, and additional links are
kept between both representations of each edge. Such an adjacency list can be initialized in
O(IV|+|E[) time for any graph. However, since we assume our input graph to be nonsepar-
able and to contain at least two edges, this implies that |VI<|E[, and the complexity is simply

O(|E|). For the same reason, the complexity of the whole algorithm will be O(|E|).

Using the above representation, it is obvious that any series or degree-2 reduction can be
carried out in constant time. Since POLYREDUCE only needs to check for eight different
types of polygons, all of limited size, any polygon-to-chain reduction can also be carried out in
constant time. Also, none of the reductions ever require the use of more vertices or edges
after the reduction than before. This means that if any new edges or vertices must be defined,

old ones can be reused and the size of the graph representation is never increased.

Now, Steps (2) and (3) in MAIN can be performed in O(|V|) time; therefore, we need
only consider the central portion of MAIN, Steps (4) through (10). Each time chains emanat-
ing from the current vertex v are checked at Step (4), the maximum amount of work which
can be performed is some constant amount, i.e., the amount needed to find three chains with
distinct end vertices u,,u;, and u;, plus some amount of work proportional to the number of
polygon-to-chain reductions made from v. Initially, at most all the vertices can be on the stack,
and after every polygon-to-chain reduction, at most two vertices can be returned to the stack.
An upper bound on the number of vertices which can ever be checked is therefore
IVI+2(JEl=|V])=2|E|-{VI, since at most |E|-|V| polygon-to-chain reductions can ever be

performed by POLYREDUCE. For some constant C,, the total amount of work required until
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T becomes empty will thus be bounded by C,(2JE|=|V|) plus the amount of work required to
make all polygon-to-chain reductions using POLYREDUCE and the subchain reductions using
CHAINREDUCE.

We have already shown that the amount of work required by a polygon-to-chain reduction
in POLYREDUCE is bounded by a constant. However, after a cail to POLYREDUCE which
reduces A(v,w) to x(v,w), a call to CHAINREDUCE is necessary if deg(v) =2 or deg(w)=2.
The chain x (s, 1) containing the subchain x (v, w) must be identified and then reduced, if possi-
ble, with series and degree-2 reductions. This can be accomplished in coastant time also, since
the length of any chain x(s,7) is at most 9. This worst case could occur if deg(v) =deg(w) =2
after the polygon-to-chain reduction of A(v,w) to y(v,w), and the subchains x(s,v), x(w, 1),
and x(v,w), which were proper chains before the reduction, are at their maximum possible
lengths of 3. It therefore follows that the amount of work associated with a polygon-to-chain
reduction, a call to POLYREDUCE and a possible call to CHAINREDUCE, is bounded by
some constant, say Cj and that the amount of work associated with all polygon-to-chain reduc-
tions is bounded by Cy(IE|~[V|). We can now see that the amount of work required until T is
empty is bounded by C,(2|E|-[V))+C,(IE|-[VI). The only work which is unaccounted for
comes from the final series and degree-2 reductions which may be necessary if G is reduced to
a single cycle, but again, this is an O(IV|) operation. Thus, we have proved the following

theorem:

Theorem 2. Let G be a nonseparable series-parallel graph. Then, for any K, R(Gy) can be

computed in O(IE|) time.

6. Extension to algorithm

The algorithm of section S can be extended to make all possible simple and polygon-to-
chain reductions in a nonseries-parallel graph. In this way, the extended algorithm can be used
as a subroutine in a more general network reliability algorithm for computing R(Gy) when G
is not series-parallel. The complexity of computing R(Gk) can often be reduced to some

degree by this device.
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Suppose the reduction algorithm of section S starts with a nonseries-parallel graph G.
After terminaiion of the algorithm, G may or may not have been partially reduced. From the
proof of Property 6, the only possible remaining reductions are polygon-to-chain reductions.
Each such polygon-to-chain reduction would correspond to a parallel edge replacement used to
obuain the graph G’ of that proof. Therefore, Gk can be totally reduced by first applying the
algorithm and then finding and reducing any remaining polygons, which can easily be done by

searching all chains emanating from all vertices v with deg(v)>2.

To extend the reduction algorithm as described, Step (4) in MAIN may be replaced by

the following, Step(4"):
Algorithm extension, changes to MAIN

(4) If Tis empty then
(a) (G may be reduced to two parallel edges, e, and e,) If |E|=2 then
(i) R(Gy)=M(1-gq,q)).
(ii) Return to general algorithm with R(Gy).

(b) (Otherwise G has not been completely reduced) For each veV such that
deg(v)>2, search all chains emanating from v calling
POLYREDUCE(A(v,w), x(v,w} M) whenever a polygon
Ay, wy=x (v, w) | J x2(v,w) is found.

{¢) Return to general algorithm with reduced G and with M.

In the worst case at Step (4'.b), each chain and thus each edge must be searched twice. There-

fore, the added computation is O(|E|) and the algorithm with the extension remains O(lE|).

To illustrate the usefulness of the extended algorithm for a general graph, let us consider
the ARPA computer network configuration as shown in Figure 7a [4]. Suppose we are
interested in the terminal-pair reliability between UCSB and CMU. Application of the extended
algorithm yields a reduced network as shown in Figure 7b with redefined edge reliabilities and
an associated multiplier. The original reliability problem is now equivalent to computing the
terminal-pair reliability between RAND and CMU in the reduced network. In linear time the
size of the network has been reduced considerably and, because computing the reliability of a

general network is exponential in its size, a significant computational advantage should be

gained.
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